event 20 апр. 2022

Research Article // Sustainable agriculture supply chain network design considering water-energy-food Nexus using queuing system: A hybrid robust possibilistic programming

By Komeyl Baghizadeh, Naoufel Cheikhrouhou, Kannan Govindan and Mahboubeh Ziyarati. This article proposes a mathematical Mixed-Integer Nonlinear Programming (MINLP) multiobjective and multiperiod model based on G/M/S//M queue theory and uncertainty for an agricultural supply chain case study, for the first time. Contrary to other investigations in this area, the proposed model is multiobjective, which focuses on water consumption, energy consumption, and waiting time in the form of independent objective functions.

category Research Papers, Publications and Books tag Water tag Water-resource management tag Economy tag Blockchain tag Ecosystems tag Food and Agriculture tag Nexus methodology tag Modelling and assessment tag Monitoring tag Infrastructure
Nrm12337 fig 0001 m

Figure 1: Suggested supply chain network for strawberry production

Abstract

Due to the nature of the agricultural and food industry, the management of production, storage, transportation, waste disposal and environmental effects of their production, are of great importance. To deal with the sustainability issues linked to their supply chains, we propose in this study a mathematical model to design a sustainable supply chain of highly perishable agricultural product (strawberry). The model is a multiperiod, multiproduct multiobjective MINLP mathematical program that takes into consideration economic, social and environmental objectives to cover all aspects of sustainability. In addition, a G/M/S/M queuing system is developed for the transportation of harvested products between facilities for the first time. Since real-world problems related to industries such as food and agriculture are inherently uncertain, in this model, the important parameters of the problem are considered uncertain using fuzzy sets theory and a hybrid robust possibilistic programming model is developed. In addition, the Epsilon constraint approach converts the multiobjective mathematical model into a single-objective one and the Lagrangian relaxation method is used to effectively solve the model on a large scale. A case study in Iran is provided to investigate the results and discuss the solutions. Finally, a sensitivity analysis is performed to identify the impacts of important parameters on the solution. According to the analysis, equipping greenhouses with drip irrigation system and using solar panels in greenhouses, respectively, have the greatest impact on improving all target functions.

Recommendations for Resource Managers

  • Multiobjective optimization shows trade-offs among conflicting objective function and assists decision-making to enhance sustainable agriculture industry.
  • Focus on transportation system in fresh product will lead to less waste.
  • The use of solar panels and drip irrigation helps to minimize water and energy consumption and CO2 emission.

Published

December 2021

By

Natural Resource Modelling

Citation

Baghizadeh, K., Cheikhrouhou, N., Govindan, K., & Ziyarati, M. (2022). Sustainable agriculture supply chain network design considering water‐energy‐food Nexus using queuing system: A hybrid robust possibilistic programming. Natural Resource Modeling, 35(1), e12337.

Download

Download the full research article here.

Releated Articles

Контактная информация

Cecilia Vey

Информационный бюллетень

Будьте в курсе!

Мы информируем Вас о текущих проектах, событиях, мероприятиях, публикациях и новост