(C) Dave Harring, Unsplash
Desalination

Nexus Blog // Desalination Outlook for MENA

By Salman Zafar. This article discusses how renewable energy-powered desalination could be a sustainable opportunity to increase supply of potable water in MENA countries.

This article was originally published by EcoMENA Echoing Sustainability in Mena and can be accessed here. 

Desalination is a water treatment process that separates salts from saline water to produce potable water. The desalination process uses large amount of energy to produce pure water from salt water source. Salt water is fed into the process, and the result is an output stream of pure water and another stream of waster with high salt concentration. Desalination techniques are mainly classified into two types:

  • Processes based on physical change in the state of the water, and
  • Processes using a membrane that employ the concept of filtration.

There are more than 15,000 industrial-scale desalination units worldwide, with combined capacity exceeding 8.5 billion gallons per day. The market leader is the membrane desalination process with around 44 percent of total capacity, followed closely by the thermal process of multi-stage flash (MSF) with about 40 percent market share. The main sources of feed water for desalination are seawater (58 percent), brackish ground water (23 percent), and other sources such as rivers and small salt lakes.

Water Problems in MENA and Desalination

Access to clean drinking water is one of the major health issues today. The Middle East and North Africa (MENA) region is the most water scarce region of the world. High population growth rate, urbanization and industrialization, coupled with limited availability of natural potable water resources are leading to serious deficits of freshwater in many parts of MENA. Freshwater sources in the MENA region are being continuously over-exploited and increased use of desalted seawater is unavoidable in order to maintain a reasonable level of water supply.

Conventional large-scale desalination is cost-prohibitive and energy-intensive, and not viable for poor countries in the MENA region due to increasing costs of fossil fuels. In addition, the environmental impacts of desalination are considered critical on account of emissions from energy consumption and discharge of brine into the sea. Brine has extremely high salt concentration and also contains leftover chemicals and metals from the treatment process which poses danger to marine life.

The negative effects of desalination can be minimized, to some extent, by using renewable energy to power the plants. Renewable energy-powered desalination offers a sustainable method to increase supply of potable water in MENA countries. The region has tremendous wind and solar energy potential which can be effectively utilized in desalination processes like reverse osmosis, electrodialysis, and ultrafiltration and nanofiltration. The cost of renewable energy desalination is expected to become more attractive with technological advancements and coupled with rising costs of freshwater and fossil fuels.

Solar-Powered Desalination for MENA

Solar energy can be directly or indirectly used in the desalination process. Collection systems that use solar energy to produce distillate directly in the solar collector are called direct collection systems while systems that combine solar energy collection systems with conventional desalination systems are called indirect systems. The major drawbacks with the use of solar thermal energy in large-scale desalination plants are low productivity rate, low thermal efficiency and large area requirement. Solar thermal-based desalination plants are more suitable for small-scale production especially in remote arid areas and islands having scarce conventional energy resources.

Concentrating solar power (CSP) offers an attractive option to power industrial-scale desalination plants that require both high temperature fluids and electricity.  CSP can provide stable energy supply for continuous operation of desalination plants based on thermal or membrane processes. Infact, several countries in the region, such as Jordan, Egypt, Saudi Arabia are already developing large CSP-based solar power projects that promises to usher in a new era in the Middle East.

The MENA region has tremendous solar energy potential that can facilitate the generation of energy required to offset the alarming freshwater deficit. The region would be facing a grave water crisis with the population expected to be double by 2050. Solar-powered desalination combined with efficient use of water reserves and re-use of wastewater can help in easing the water crisis in the region. It will also help in reducing the financial load on MENA governments from power and water sectors, and thus diverting funds to much-needed educational, health and industrial sectors.

› back

Governance

Conférence// Prévention et gestion des conflits liés à la gouvernance des ressources naturelles en Afrique de l’Ouest: défis et perspectives

Le Service civil pour la paix et le projet Frexus, tous deux mis en œuvre par la GIZ, organisent une conférence internationale sur le thème : « Prévention et gestion des conflits liés à la gouvernance des ressources naturelles en Afrique de l'Ouest : défis et opportunités ». La conférence aura lieu du 12 au 14 novembre 2019 à Niamey, au Niger. La conférence vise à informer et à créer des synergies entre les différents acteurs d'Afrique de l'Ouest et d'ailleurs, en partageant leurs capacités dans...

// more
Governance

Conference // Prevention and Management of Conflicts linked to the Governance of Natural Resources in West Africa: Opportunities and Challenges

The Civil Peace Service and the Frexus project, both implemented by the GIZ, are organizing an international conference on the theme: “Prevention and management of conflicts related to natural resource governance in West Africa: challenges and opportunities.” The conference takes place between November 12th and 14th 2019 in Niamey, Niger. The conference aims to inform and create synergies between different actors from West Africa and elsewhere, sharing their capacities in the prevention,...

// more
Governance

Publication // What-If: An Open-Source Decision Support Tool for Water Infrastructure Investment Planning within the Water–Energy–Food–Climate Nexus

By Raphaël Payet-Burin, Mikkel Kromann, Silvio Pereira-Cardenal, Kenneth Marc Strzepek and Peter Bauer-Gottwein. This paper presents a new open-source hydro-economic optimization model, incorporating in a holistic framework, representations of the water, agriculture, and power systems. The model represents the joint development of Nexus related infrastructure and policies and evaluates their economic impact, as well as the risks linked to uncertainties in future climate and socio-economic...

// more